Polarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the ascidian egg

نویسندگان

  • J E Speksnijder
  • M Terasaki
  • W J Hage
  • L F Jaffe
  • C Sardet
چکیده

During the first cell cycle of the ascidian egg, two phases of ooplasmic segregation create distinct cytoplasmic domains that are crucial for later development. We recently defined a domain enriched in ER in the vegetal region of Phallusia mammillata eggs. To explore the possible physiological and developmental function of this ER domain, we here investigate its organization and fate by labeling the ER network in vivo with DiIC16(3), and observing its distribution before and after fertilization in the living egg. In unfertilized eggs, the ER-rich vegetal cortex is overlaid by the ER-poor but mitochondria-rich subcortical myoplasm. Fertilization results in striking rearrangements of the ER network. First, ER accumulates at the vegetal-contraction pole as a thick layer between the plasma membrane and the myoplasm. This accompanies the relocation of the myoplasm toward that region during the first phase of ooplasmic segregation. In other parts of the cytoplasm, ER becomes progressively redistributed into ER-rich and ER-poor microdomains. As the sperm aster grows, ER accumulates in its centrosomal area and along its astral rays. During the second phase of ooplasmic segregation, which takes place once meiosis is completed, the concentrated ER domain at the vegetal-contraction pole moves with the sperm aster and the bulk of the myoplasm toward the future posterior side of the embryo. These results show that after fertilization, ER first accumulates in the vegetal area from which repetitive calcium waves are known to originate (Speksnijder, J. E. 1992. Dev. Biol. 153:259-271). This ER domain subsequently colocalizes with the myoplasm to the presumptive primary muscle cell region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unfertilized eggs of the ascidian Halocynthia roretzi are radially symmetrical along the animal-vegetal axis. After fertilization, ooplasmic segregation results in formation

In the unfertilized eggs of many kinds of animal, there is a single axis, namely, the animal-vegetal axis, and eggs exhibit radial symmetry along the axis. The second axis is established just after fertilization or during early embryogenesis, and embryos become bilaterally symmetrical. In the ascidian egg, the second axis, which corresponds to the future anteriorposterior axis, is generated dur...

متن کامل

Egg activation at fertilization: where it all begins.

A centrally important factor in initiating egg activation at fertilization is a rise in free Ca(2+) in the egg cytosol. In echinoderm, ascidian, and vertebrate eggs, the Ca(2+) rise occurs as a result of inositol trisphosphate-mediated release of Ca(2+) from the endoplasmic reticulum. The release of Ca(2+) at fertilization in echinoderm and ascidian eggs requires SH2 domain-mediated activation ...

متن کامل

Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi.

An animal-vegetal axis exists in the unfertilized eggs of the ascidian Halocynthia roretzi. The first phase of ooplasmic segregation brings the egg cortex to the vegetal pole very soon after fertilization. In the present study, when 5-8% of the egg cytoplasm in the vegetal pole region was removed between the first and second phase of segregation, most embryos exhibited failure of gastrulation, ...

متن کامل

Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo.

The mature ascidian oocyte is a large cell containing cytoplasmic and cortical domains polarized along a primary animal-vegetal (a-v) axis. The oocyte cortex is characterized by a gradient distribution of a submembrane monolayer of cortical rough endoplasmic reticulum (cER) and associated maternal postplasmic/PEM mRNAs (cER-mRNA domain). Between fertilization and first cleavage, this cER-mRNA d...

متن کامل

Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex.

Localization of maternal mRNAs in the egg cortex is an essential feature of polarity in embryos of Drosophila, Xenopus and ascidians. In ascidians, maternal mRNAs such as macho 1, a determinant of primary muscle-cell fate, belong to a class of postplasmic RNAs that are located along the animal-vegetal gradient in the egg cortex. Between fertilization and cleavage, these postplasmic RNAs relocat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 120  شماره 

صفحات  -

تاریخ انتشار 1993